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Abstract We consider the generalization problem for a perceptron with binary synapses,
implementing the Stochastic Belief-Propagation-Inspired (SBPI) learning algorithm which
we proposed earlier, and perform a mean-field calculation to obtain a differential equation
which describes the behaviour of the device in the limit of a large number of synapses N .
We show that the solving time of SBPI is of order N

√
logN , while the similar, well-known

clipped perceptron (CP) algorithm does not converge to a solution at all in the time frame
we considered. The analysis gives some insight into the ongoing process and shows that,
in this context, the SBPI algorithm is equivalent to a new, simpler algorithm, which only
differs from the CP algorithm by the addition of a stochastic, unsupervised meta-plastic re-
inforcement process, whose rate of application must be less than

√
2/(πN) for the learning

to be achieved effectively. The analytical results are confirmed by simulations.
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1 Introduction

The perceptron was first proposed by Rosenblatt [17] as an extremely simplified model
of a neuron, consisting in a number N of input lines, each one endowed with a weight
coefficient (representing the individual synaptic conductances), all of which converge in
a central unit (representing the soma) with a single output line (the axon). Typically, the
output is computed from a threshold function of the weighted sum of the inputs, and the
time in the model is discretized, so that, at each time step, the output does only depend
on the input at that time step. The unit can adapt its behaviour over time by modifying the
synaptic weights (and possibly the output threshold), and thus it can undergo a learning (or
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memorizing) process. In this paper, we only consider the case in which the learning process
is “supervised”, i.e. in which there is some feedback from the outside, typically in the form
of an “error signal”, telling the unit that the output is wrong, as opposed to “unsupervised”
learning, in which no feedback is provided to the unit.

Despite its simplicity, the perceptron model is very powerful, being able to process its
inputs in parallel, to retain an extensive amount of information, and to plastically adapt its
output over time in an on-line fashion. Furthermore, it displays a highly non-trivial behav-
iour, so that much research has been devoted to the study of its analytical properties and
of the optimal learning strategies in different contexts (see e.g. [1, 6, 7, 9, 12, 13, 19] and
references therein). In the supervised case, there are typically two scenarios: the first, which
we will call “classification” problem in the rest of this paper, is defined by a given set of
input-output associations that the unit must learn to reproduce without errors, while the sec-
ond, which we will call “generalization” problem, is defined by a given input-output rule
that the unit must learn to implement as closely as possible. Here, we will mainly focus our
attention on this last problem.

Furthermore, we will restrict to the case in which the synaptic weights are assumed to
be binary variables. Binary models are inherently simpler to implement and more robust
over time against noise with respect to models in which the synaptic weights are allowed
to vary over a continuous set of values, while having a comparable information storage ca-
pacity [6, 9, 13]; furthermore, some recent experimental results [15, 16], as well as some
arguments from theoretical studies and computer simulations [2, 3, 10, 14], suggest that
binary-synapses models could also be more relevant than continuous ones as neuronal mod-
els exhibiting long term plasticity. However, from an algorithmic point of view, learning
is much harder in models with binary synapses than in models with continuous synapses:
in the worst-case scenario, the classification learning problem is known to be NP-complete
for binary weights [4], while it is easy to solve it effectively with continuous weights [6].
Even in the case of random, uncorrelated inputs-output associations, the solution space of
the classification problem in the binary case is in a broken-symmetry phase, while in the
continuous case it is not [13], implying that the learning strategies which successfully solve
the learning problem in the latter case are normally not effective in the former.

Despite these difficulties, an efficient, easily implementable, on-line learning algorithm
can be devised which solves efficiently the binary classification problem in the case of ran-
dom, uncorrelated input stimuli [1]. Such an algorithm was originally derived from the
standard Belief Propagation algorithm [5, 11, 20], and hence named ‘Stochastic Belief
Propagation-Inspired’ (SBPI). The SBPI algorithm makes an additional requirement on the
model, namely, that each synapse in the device, besides the weight, has an additional hid-
den, discretized internal state; transitions between internal states may be purely meta-plastic,
meaning that the synaptic strength does not necessarily change in the process, but rather that
the plasticity of the synapse does. The SBPI learning rules and hidden states requirements
are the same as those of the well known clipped perceptron algorithm (CP, see e.g. [18]),
the only difference being an additional, purely meta-plastic rule, which is only applied if the
answer given by the device is correct, but such that a single variable flip would result in a
classification error.

The SBPI algorithm was derived and tested in the context of the classification prob-
lem: in such scheme, all the input patterns are extracted from a given pattern set, randomly
generated before the learning session takes place, and presented to the student device re-
peatedly, the outcome being compared to the desired one, until no classification errors are
made any more. Since the analytical treatment of the learning process is awkward in such
case, due to the temporal correlations emerging in the input patterns as a consequence of the
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repeated presentations, we could only test the SBPI algorithm performance by simulations,
and compare it to that of other similar algorithms, such as the CP algorithm and the cascade
model [7]. It turned out that the additional learning rule which distiguishes the SBPI algo-
rithm from the CP algorithm is essential to SBPI’s good performance, and that there exists
an optimal number of parameters for both the number of internal hidden states per synapse
and for the rate of application of the novel learning rule.

In order to understand the reason for the SBPI new rule’s effectiveness, it is necessary to
give an analytical description of the learning process under the CP and SBPI learning rules;
to this end, we consider here the problem of generalization from examples: in such scheme,
the input patterns are generated afresh at each time step, and the goal is to learn a linearly
separable classification rule, provided by a teacher device. Perfect learning is achieved if
the student’s synapses match the teacher’s ones. Using a teacher unit identical to the student
to define the goal input-output function ensures that a solution to the problem exists and is
unique, but we also briefly consider the case of a non-perfect-learnable rule, provided by a
continuous-weights teacher perceptron. The learning process in this case is much easier to
treat analytically than in the classification case, since the input patterns are not temporally
correlated, and the dynamical equations for this system can be derived by a mean field
calculation for the case of a learnable rule. This problem is in fact easier to address than
the classification problem, and optimal algorithms can be found which solve it in the binary
synapses case as well (see e.g. [8, 18, 19]); however, such algorithms are not suitable to be
considered as candidates for biological models for online learning, being either too complex
or requiring to perform all intermediate operations with an auxiliary device with continuous
synaptic weights.

The resulting differential equation set that we obtained gives some insight on the learning
dynamics and about the reason for SBPI’s effectiveness, and allows for a further simplifi-
cation of the SBPI algorithm, yielding an even more attractive model of neuronal unit, both
from the point of view of biological feasibility and of hardware manufacturing design sim-
plicity. With a special choice for the parameters, the solution to the equation set is simple
enough to be studied analytically and demonstrate that the algorithm converges in a number
of time steps which goes as N

√
logN . All the results are confirmed by simulations.

The outline of the rest of this paper is as follows: in Sects. 2 and 3 we define in detail the
learning algorithm and the generalization problem, respectively. In Sects. 4 and 5 we derive
the mean-field dynamics for the CP and SBPI algorithms, and in Sect. 6 we derive the set
of continuous differential equations which describes the process in the N → ∞ limit and
exhibit a solution. In Sect. 7 we consider a special case in which the equation set can be
simplified and derive some analytical results on convergence time in such case. In Sect. 8
we consider the case of bounded hidden states. In Sect. 9 we briefly consider the case of a
non learnable rule. In Sect. 10 we discuss the simplified algorithm derived in Sect. 5. We
summarize our results in the last section.

2 The SBPI Learning Algorithm

The device we consider is a binary perceptron with N synapses, each of which can take
the values wi = ±1, receiving inputs ξ

μ

i = ±1, with output σμ = ±1, and threshold θ = 0.
Thus, the device output is given as a function of the inputs and of the internal state as

σμ = sign

(
N∑

i=1

wiξ
μ

i

)
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Furthermore, each synapse is endowed with a discretized internal variable hi , which
only plays an active role during the learning process; for simplicity, we will consider it to
be an odd-valued integer. At any given time, the sign of this quantity gives the value of
the corresponding synaptic weight, wi = sign(hi). We will start by considering the case of
unbounded hidden states, and then turn to the bounded case.

SBPI is an on-line supervised learning algorithm; upon presentation of a pattern {ξμ

i , σ
μ

D},
where σ

μ

D is the desired output, the stability is computed as

Δμ = σ
μ

D

(
N∑

i=1

wiξ
μ

i

)

The way synaptic weights are updated depends on the value of Δμ:

1. If Δμ > θm, then nothing is done.
2. If 0 < Δμ ≤ θm, then only the synapses for which wi = ξ

μ

i σ
μ

D , are updated, and only with
probability ps .

3. If Δμ ≤ 0, then all synapses are updated.

Here, θm is a secondary threshold, expressed as an even integer, and ps ∈ [0,1]. The update
rule applies to the hidden synaptic variables:

hi → hi + 2ξ
μ

i σ
μ

D

The factor 2 is required in order to keep the value of the hidden variables odd, which
in turn is useful for avoiding the ambiguous, but otherwise immaterial, hi = 0 case. Note
that the only actual plasticity events occur when the hidden variables change sign; also, the
update in rule 2 is always in the direction of increasing the hidden variables’ modulus, thus
reinforcing the synaptic value by making it less likely to switch.

When the probability ps or, equivalently, when the secondary threshold θm are set to 0,
rule 2 is never applied and the algorithm is reduced to the CP algorithm.

In the special case, ps = 1 and θm = 2, we refer to the algorithm as to BPI.

3 Definition of the Generalization Learning Problem

The protocol which was originally used to obtain the SBPI update rules was that of classi-
fication of random patterns extracted from a given set; learning of the correct classification
was achieved by repeated presentations of the patterns from the set and application of the
update rules. The maximum number of input-output associations that the system could mem-
orize in this way was shown by simulations to be proportional to the number of synapses N ,
the coefficient of proportionality being fairly close to the maximal theoretical value, with an
order O(log(N)1.5) presentations per pattern required on average.

Here instead we will consider the problem of learning a rule from a teacher perceptron,
identical to the student (the case of a different teacher device being considered in Sect. 9);
the patterns are generated at random at each time step, each input ξi being extracted inde-
pendently with probability P (ξi = +1) = P (ξi = −1) = 1/2, and the desired output is given
by the teacher. Thus, the goal is to reach a perfect overlap with the teacher, an event which
can be thought of as the student having learned an association rule. An optimal learning
algorithm for this problem, which reaches the solution in about 1.245N steps in the limit
of large N , can be derived by the Bayesian approach [19] (which is equivalent to the Belief
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Propagation approach [5] in this case); however, this optimal algorithm does not work in an
on-line fashion, as it requires to keep the memory of each pattern which was presented thus
far to the device. An on-line approximation of the optimal algorithm, proposed in [19] and
later re-derived from a different approach in [1] as an intermediate step towards SBPI, over-
comes this problem at the expense of a lower performance, but it still requires the internal
storage of continuous quantities, and complex computations to be performed at each time
step.

In order to simplify the notation in the rest of this paper, we will assume that the student
is always trained only on patterns whose desired output is +1, which can be insured in
this way: at each time τ a new pattern {χτ

i }i is generated randomly and presented to the
teacher, whose output is σ τ

T ; then, the pattern {ξ τ
i } = {σ τ

T χτ
i } is presented to the student,

with desired output σ τ
D = +1. Also, we can assume, without loss of generality, that all the

teacher’s synapses are set to wT
i = +1. This implies that the student will only be presented

patterns in which there are more positive than negative inputs.
In the following, we shall show that it is possible to describe the average learning dy-

namics and estimate the time needed for the student to reach overlap 1 with the teacher,
q = 1

N
(w · wT ) = 1.

4 Histogram Dynamics for the CP Algorithm

We will do a mean-field-like approximation to the problem: at each time step, given the
histogram of the hidden variables at a time τ , P τ ({hi}), we compute the average distrib-
ution (over the input patterns) at time τ + 1, P τ+1({hi}), and iterate. The approximation
here resides in the fact that, at each step, what we obtain is an average quantity (a single
histogram), which we use as input in the following step, while a more complete description
would involve the evolution of the whole probability distribution over all the possible result-
ing histograms. Therefore, we are implicitly assuming that the spread of such probability
distribution around its average is negligible; our results confirm this assumption.

We will start from the simpler case of the CP algorithm (no rule 2), and temporarily drop
the index τ .

Let us first compute the probability of making a classification error. This only depends
on the current teacher-student overlap q . We will denote by q+ (q−) the fraction of student
synapses which are set to +1 (−1), so that the overlap is q = q+ − q− = 2q+ − 1. In the
following, we have to consider separately the +1 and −1 synapses: we denote by ν+ the
number of positive inputs over the positive synapses, and by ν− the number of positive
inputs over the negative synapses. Because of the constraint on the patterns, there have to
be more positive inputs than negative ones, i.e. ν+ + ν− > N

2 . The perceptron will classify
the pattern correctly if ν+ + (q−N − ν−) > N

2 , thus the probability that the student makes
an error is given by

pe = 2
∫

dμ(ν+)dμ(ν−)Θ

(
ν+ + ν− − N

2

)
Θ

(
−

(
ν+ + (q−N − ν−) − N

2

))

where μ(ν±) is the measure over ν± without the constraint on the pattern (which is explicitly
obtained by cutting half of the cases and renormalizing). In the large N limit, this is a normal
distribution, centered on q±N

2 with variance q±N

4 , thus we can write the above probability as

pe = 2
∫

Dx+Dx− Θ
(√

q+x+ + √
q−x−

)
Θ

(−√
q+x+ + √

q−x−
)
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= 1 − 2

π
arctan

(√
q+
q−

)

= 1

π
arccos(q) (1)

where we used the shorthand notation Dx = dx 1√
2π

e− x2
2 ((1) is the standard relation be-

tween the generalization error and the teacher-student overlap in perceptrons, see e.g. [6]).
We then focus on a synapse with negative value, and compute the probability that there

is an error and that the synapse receives a positive input:

P (Δ < 0 ∧ ξi = 1|wi = −1)

= 2
∫

Dx+Dx−
(

1

2
+ x−

2
√

q−N

)
Θ

(√
q+x+ + √

q−x−
)
Θ

(−√
q+x+ + √

q−x−
)

= pe

2
+ 1√

2πN
+ O

(
1

N

)

The probability that a negative-valued synapse receives a negative input, and that an error
is made, is very similar:

P (Δ < 0 ∧ ξi = −1|wi = −1) = pe

2
− 1√

2πN
+ O

(
1

N

)

The probabilities for positive-valued synapses are simpler:

P (Δ < 0 ∧ ξi = ±1|wi = +1) = pe

2
+ O

(
1

N

)

Therefore, a positive-valued synapse (which is thus correctly set with respect to the
teacher) has an equal probability of switching up or down one level, while a negative-valued
one (which is thus wrongly set) has a higher probability of switching up than down. The
histogram dynamics can be written in a first-order approximation as:

P τ+1(h) = P τ (h)[1 − pτ
e ]

+P τ (h + 2)

[
pτ

e

2
− Θ(−(h + 2))√

2πN

]

+P τ (h − 2)

[
pτ

e

2
+ Θ(−(h − 2))√

2πN

]
(2)

where, as usual, the h’s are assumed do be odd. It can be easily verified that normalization
is preserved by this equation.

Note that, if pe is very small, pe

2 − 1√
2πN

may become negative, which is meaningless; in
terms of the overlap, this happens when q−N < π

2 , i.e. when convergence is reached up to
just one or two synapses (in fact, this does never happen with the CP algorithm, which does
not appear to ever converge to the solution or to even get close to convergence). This is due
to the fact that the gaussian approximation we used is not valid any longer when q− is of
order N−1; note however that this is not really an issue for practical purposes, as simulations
show that whenever the algorithm gets into this region, convergence is eventually reached
in short time.
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5 Histogram Dynamics for the SBPI Algorithm

We now turn to SBPI. We have to compute the probability that the new rule 2 is applied,
which happens when 0 < Δ ≤ θm with probability ps ; thus:

pb = 2ps

∫
Dx+Dx−Θ

(√
q+x+ + √

q−x−
)
Θ

(√
q+x+ − √

q−x−
)

×Θ

(
−√

q+x+ + √
q−x− + θm√

N

)

= psθm√
2πN

+ O
(

1

N

)
(3)

The leading term is of order N− 1
2 , so there’s no need to distinguish between positive

and negative synapses here, because the difference between the two cases is of order N−1.
Thus, each synapse has a probability pb/2 of moving away from 0 and a probability pb/2
of standing still, since only half of the synapses are involved in rule 2 each time it is applied.

We note that the result does not depend on the internal state of the device: it is a constant,
acting for both positive and negative synapses. Furthermore, we see that we can reduce the
number of parameters by defining

k = psθm (4)

This means that, in the generalization context and in the limit of large N , rule 2 in the
SBPI algorithm can be substituted by a stochastic, generalized and unsupervised reinforce-
ment process. We shall come back to this issue in Sect. 10.

Using (3) we can add rule 2 to (2), getting the full SBPI dynamics:

P τ+1(h) = P τ (h)J τ
0 + P τ (h + 2)J τ

−(h + 2) + P τ (h − 2)J τ
+(h − 2) (5)

where

J τ
0 = 1 − pτ

e − k/2√
2πN

J τ
−(h) = pτ

e

2
− Θ(−h)

1√
2πN

+ Θ(h)
k/2√
2πN

(6)

J τ
+(h) = pτ

e

2
+ Θ(−h)

1√
2πN

+ Θ(h)
k/2√
2πN

The agreement between this formula and the simulations is almost perfect, except when
the average number of wrong synapses is very low, i.e. when q−N is of order 1, as can be
seen in Fig. 2.

6 Continuous Limit

Equations (5) and (7) can be converted to a continuous equation in the large N limit, by
rescaling the variables:

t = τ

N
(7)
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x = h√
N

(8)

and using a probability density

p(x, t) = √
NP Nt

(√
Nx

)
(9)

Note that the
√

N scaling of the hidden variables is the same which we found empirically
in the classification learning problem [1].

Using these and taking the limit N → ∞ we get the partial differential equation set:

∂p

∂t
(x, t) = 2pe(t)

∂2p

∂x2
(x, t)

− 1√
2π

∂p

∂x
(x, t)[(4 − k)Θ(−x) + kΘ(x)]

+ δ(x)Θ(−x)γ −(t) + δ(x)Θ(x)γ +(t) (10)

pe(t) = 1

π
arccos(q(t)) (11)

q(t) = 2
∫ ∞

0
dxp(x, t) − 1 (12)

where δ(x) represents the Dirac delta function.
The two quantities γ −(t) and γ +(t) don’t need to be written explicitly, since they can be

specified by imposing two conditions on the solution, normalization and continuity:

∫ +∞

−∞
p(x, t) = 1 (13)

p(0−, t) = p(0+, t) (14)

The reason for the continuity requirement, (14), is the following: if there would be a
discontinuity in x = 0, the net probability flux through that point would diverge, as can be
seen by direct inspection of (5) and considering how the τ and h variables scale with N .
Note that, in the BPI case k = 2, enforcing these two constraints simply amounts at setting
γ ±(t) = 0, as discussed in the next section.

As a whole, (10) is non-local, since the evolution in each point depends on what happens
at x = 0; on the other hand, it greatly simplifies away from that point: on either side of the x

axis, it reduces to a Fokker-Planck equation, with a time-dependent coefficient of diffusion,
and a constant drift term. In general, the drift term is different between the left and right
side of the x axis, and depends on k; this difference gives rise to an accumulation of the
probability distribution on both sides of the point x = 0 (expressed by the two Dirac delta
functions in the equation).

For negative x, (10) reads:

∂p

∂t
(x, t) = 2pe(t)

∂2p

∂x2
(x, t) − (4 − k)√

2π

∂p

∂x
(x, t) (15)

If the initial distribution, at time t0, is a gaussian centered in x0 with variance v0, then
the solution to this equation is a gaussian whose center x̄(t) and variance v(t) obey the
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equations:

x̄(t) = x0 + 4 − k√
2π

(t − t0) (16)

v(t) = v0 + 4
∫ t

t0

dt ′pe(t
′) (17)

Let us call g−(x, t, t0) such a solution, assuming x0 = 0 and v0 = 0 (i.e. assuming the
initial state to be a Dirac-delta centered in 0). We can define in an analogous way a solution
to the x > 0 branch of (10):

∂p

∂t
(x, t) = 2pe(t)

∂2p

∂x2
(x, t) − k√

2π

∂p

∂x
(x, t) (18)

As before, this equation transforms gaussians into gaussians: the corresponding solution
g+(x, t, t0) only differs from g− in that the centre of the gaussian moves to the right with a
velocity proportional to k, rather than 4 − k.

Overall, this gives a qualitative understanding of what happens during learning: away
form x = 0, on both sides there’s a diffusion term (the same for both), which tends to 0 if
the majority of the synapses gets to the right side of the x axis. The synapses are ‘pushed’
right by the drift with ‘strength’ k on the right side and 4 − k on the left side. Right at x = 0,

there’s a bi-directional flux between the two sides of the solution, such that the overall area
is conserved and that the curve is continuous (even if the derivatives are not). Thus, it is
evident that both k ≤ 0 and k ≥ 4 are very poor choices (and they include the CP algorithm,
which corresponds to k = 0). If the majority of the synapses eventually reaches the right
side, the diffusion stops and the drift dominates. The evolution of the histograms at different
times for different values of k is shown in Fig. 1.

An analytical solution to (10) can be written in terms of the functions g± defined above:
the flux through x = 0 gives rise, in the continuous limit, to the generation of Dirac deltas in
the origin, which in turn behave like gaussians of 0 variance that start to spread and shift. Due
to the homogeneity of the equation, this allows to write a solution as a weighted temporal
convolution of evolving gaussians: first, we write the initial condition as p(x,0) = p0(x);
then, we define p−

0 (x, t) as the time evolution of p0(x) under (15) and p+
0 (x, t) as the time

evolution of p0(x) under (18) (these can normally be computed easily, e.g. by means of
Fourier transforms). This allows us to write the solution in the form:

p(x, t) = Θ(−x)p−(x, t) + Θ(x)p+(x, t) (19)

where

p±(x, t) = p±
0 (x, t) +

∫ t

0
dt ′γ ±(t ′)g±(x, t, t ′) (20)

with the constraints given in (13) and (14). This solution can be verified by direct substitution
in (10); it is not likely to be amenable to further analytical treatment, but it is sufficient
for numerical integration, which indeed shows an almost perfect agreement with the data
obtained through histogram evolution at large N , as shown in Fig. 2a.
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Fig. 1 Evolution of the histograms with time (dark lines to light lines, taken in time steps of Δt = 3, from
t = 1 to t = 25), in simulations with four different algorithms (500 samples at N = 32001). In panels (a)
and (b), the positive and negative sides of the curve obey different differential equations; in the CP algorithm
there’s no drift term on the right side, and thus the majority of the synapses stays near zero, causing a signif-
icant fraction of the synapses to be pushed back to the negative side. The distributions are gaussians for the
unbounded BPI algorithm (c), while setting a boundary makes the histograms accumulate at the boundary (d).
In all cases, the initial distribution was random, with all the synapses at h = ±1

7 Density Evolution for BPI

In the BPI case, i.e. when k = 2, the two sides of (10) are equal; thus, the terms γ ±(t) both
vanish, and (10) simplifies to:

∂p

∂t
(x, t) = 2pe(t)

∂2p

∂x2
(x, t) −

√
2

π

∂p

∂x
(x, t) (21)

If the initial distribution is a gaussian centered in x0 and variance v0, p(x,0) =
1√
v0

G(
x−x0√

v0
), then the evolution of the distribution is described by the following system

of equations:

p(x, t) = 1√
v(t)

G

(
x − x̄(t)√

v(t)

)
(22)

x̄(t) = x0 +
√

2

π
t (23)

v(t) = v0 + 4
∫ t

0
dt ′pe(t

′) (24)

pe(t) = 1

π
arccos(q(t)) (25)

q(t) = erf

(
x̄(t)√
v(t)

)
(26)
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Fig. 2 (Color online) Comparison between simulations (light solid lines), histogram evolution (solid lines)
and continuous probability density evolution (dark dotted lines), for three different algorithms (red: CP, green:
SBPI with k = 0.8, blue: BPI), at different times. The curves were taken at N = 32001, and initialized as for
Fig. 1. The agreement between the simulations and the two analytical predictions is almost perfect, except
when q− is very small. (a) Histograms at different times (leftmost curves: CP, middle: SBPI, rightmost:
BPI). The analytical curves are not available for SBPI at t = 10 since at that point the algorithm has already
converged and the approximations used are no longer valid. (b) Average overlap q (top curves, starting from 0)
and error rate pe (bottom curves, starting from 0.5) vs time (from worst to best performance: CP, BPI, SBPI).
(c) Fraction of wrong synapses q− vs time, in logarithmic scale (from topmost to bottommost: CP, BPI,
SBPI). This can be used as an estimate of the convergence time with N ; the BPI curve is fit asymptotically

by a curve which goes like t ∝
√

log(q−1− ) (not shown)

Thus, the gaussian shape of the distribution is preserved, but its center and its variance
evolve in time: the center moves to the right at constant speed, while the variance derivative
is proportional to the error rate. Convergence is thus guaranteed, since the variance can
grow at most linearly, which means that the width of the distribution can grow at most as√

t , while the center’s speed is constant. Thus, for sufficiently large times, the negative tail
of the distribution, which determines the error rate (pe ∼ √

1 − q when q → 1), will be
so small that the variance will almost be constant, and this in turn implies that the error
rate decreases exponentially with time. If we define the convergence time Tc as the time by
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Fig. 3 Solving time with
different values of the rescaled
boundary c. Each point
represents the average over 80
samples at N = 32001 (standard
deviations are smaller than the
point size). The overall optimum
is found at c = 2.5 with k = 1.2.
These results are consistent with
those found with N = 64001 (not
shown)

which the number of wrong synapses becomes less than 1, i.e. when Nq ∼ 1, we find that
asymptotically Tc ∼ √

logN , which means that the non-rescaled convergence time is almost
linear with the number of synapses.

Figure 2b shows the overlap and error rate as a function of time; the agreement of the
analytical solution with the simulation data is almost perfect, except when q− is very small,
as shown in Fig. 2c.

8 Bounded Hidden Variables

We can easily introduce a limit over the number of available hidden states, by setting a
maximum value c

√
N for the modulus of h. Obviously, if c is too small the algorithm’s

performance is impaired, while if c is large enough it has no effect; in between, the behavior
depends on the value of k. It turns out that setting a boundary over h can effectively improve
performance for BPI (k = 2), but it has almost no effect for the optimal SBPI algorithm,
with k ∼ 0.8, similarly to what happens in the classification problem scenario studied in [1]:
in fact, the optimum in this case was found to occur with k = 1.2, at c = 2.5. The results
are summarized in Fig. 3. An example of bounded histogram evolution is in the last panel
of Fig. 1.

9 Teacher with Continuous Synaptic Weights

The above results were derived in the scenario of the generalization of a learnable rule, the
desired output being provided by a binary perceptron. In this section, we consider instead
the case of a non learnable rule, provided by a perceptron with continuous synaptic weights
extracted at random from a uniform distribution in the range [−1,1]: the minimum general-
ization error is no longer 0 in this case, and our previous mean-field approach is not able to
provide a simple analytic solution; however, (1) still holds true (in the limit of large N ), and
hence the best possible assignment of the student’s weights is obtained by taking the sign of
the teacher’s weights, in which case the generalization error is equal to 1/6.

Our simulations show (Fig. 4a) that even in this case the SBPI algorithm outperforms
the CP algorithm when the parameter ps is chosen in the appropriate range, and that there
exists an optimal value for ps such that the generalization error rapidly gets very close to the
optimal value, even though the optimum is reached in exponential time (arguably due to the
fact that the region around the solution is very flat in this case, because some of the teacher’s
weights are so small that their inference is both very difficult and not very relevant).
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Fig. 4 (Color online) Simulation results using a teacher with continuous weights. (a) Average error rate
ps vs time for N = 501, 1000 samples (dotted black line: minimum possible error; red dashed curve: CP;
green solid curve: SBPI with optimal ps = 0.8). The learning curves scale with N following the same power
law shown in the next panel. (b) Scaling of the ps parameter with N , in logarithmic scale, and best fit. The
fitting curves have the form aN−b , the fitting parameters are a = 9.9 ± 0.8, b = 0.403 ± 0.008 (optimal) and
a = 20.5 ± 2.4, b = 0.400 ± 0.013 (maximum)

One important difference between this case and the previous one is that both the optimal
and the maximum value of the parameter ps (the maximum value is the one above which the
performance becomes equal or worse than that of CP) are not fixed with varying N : rather,
they both scale following the same power law (Fig. 4b).

10 A Simplified Algorithm: CP + R

We have shown in Sect. 5 that, in the limit of a large number of synapses N and in the con-
text of the generalization learning of a learnable rule, the effect of the additional rule which
distinguishes the SBPI algorithm from the CP algorithm, and which is responsible for the
superior performance of the former with respect to the latter, is on average equivalent to
applying an unspecific, constant and low-rate meta-plastic reinforcement to all the synapses
(see (3)). This reinforcement process is only effective if it is not too strong, because other-
wise it would overcome the effect of the learning by keeping all of the synapses away from
the plastic transition boundary (i.e. away from x = 0, in the notation of Sect. 6).

This suggests that the SBPI algorithm can be further simplified, leading to a “clipped
perceptron plus reinforcement” algorithm (CP + R), i.e. the CP algorithm with the addi-
tional prescription that, at each time step τ , each synaptic weight undergoes a meta-plastic

transition hτ
i → hτ

i + 2sign(hτ
i ) with probability pr , where 0 < pr <

√
2

πN
(the time step

index τ does not increment in the reinforcement process, because it is superimposed to the
standard learning rules and acts in parallel with them). Any value of pr greater then 0 makes
a qualitative difference with respect to CP.

The CP + R algorithm is only equivalent to the SBPI algorithm in the generalization
of a learnable rule scenario. Indeed, in the case of a the non-learnable rule of Sect. 9, the
relationship of (3) does not hold any more; however, the CP + R algorithm still proves as
effective as SBPI when the parameter pr is properly set (not shown).

In the classification problem, on the other hand, the performance of CP + R is worse in
terms of capacity by a factor of the order of 2 with respect to SBPI. However, our preliminary
results show that the difference in such scenario between the two algorithms shows up only
in the latest phases of the learning (when the temporal correlations in the inputs make a
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difference), and that simply reducing the rate of application of the reinforcement process pr

during the learning along with the error rate is sufficient to recover the SBPI performance
even in that case. This will be the subject of a future work.

From the architectural point of view, such CP + R algorithm is even simpler than the
SBPI algorithm (which was already derived as a crude simplification of the Belief Propaga-
tion algorithm); thus, it may be an even better candidate for modelling supervised learning
in biological networks, which have very strict requirements about robustness, simplicity and
effectiveness. Its only serious drawback with respect to SBPI is that the random reinforce-
ment must be applied sparingly, since the probability is of order O(1/

√
N), which would

require some fine-tuning mechanism of the cells behaviour; SBPI, on the other hand, re-
quires detection of near-threshold events in order to trigger the reinforcement rule, which
may also be problematic. Furthermore, even if the learning rate under CP + R is sub-optimal
with respect to the generalization protocol problem, its extreme simplicity and robustness
might be attractive for hardware implementations of binary perceptron units with very large
number of synapses as well, because it is adaptable to both the classification and the gen-
eralization scenarios, and, even in the latter (algorithmically easier) case, it greatly reduces
the overhead associated with the complex computations required by the faster algorithms,
while still having a very good scaling behaviour with N , as the steps required grow at most
as O(N

√
logN).

11 Summary

In this paper, we have studied analytically and through numerical simulations the SBPI
algorithm dynamics in the supervised generalization learning scenario and in the limit of a
large number of synapses N .

The original goal, which was that of claryfing the role of the novel learning rule intro-
duced by this algorithm, was approached by studying the average dynamics of the internal
synaptic state and separating the contributions due to the different learning rules, which al-
lowed us to derive a partial differential equation describing the learning process in terms of a
diffusion process. The solution of such equation in a (non-optimal) special case provided us
with an estimate for the learning time, which turned out to scale as N

√
logN . The analytical

predictions were found to be in excellent agreement with the numerical simulations.
We have also obtained some results from simulations under circumstances in which the

previous analytical approach failed, and found that the SBPI algorithm can be further opti-
mized by setting properly a hard boundary to the number of internal synaptic states (scaling
as

√
N ), which confirms our previous results in the context of classification learning, and

that its enhanced effectiveness with respect to CP is not limited to learnable rules.
The analytical results, together with their interpretation in terms of the synaptic states’

dynamics, have also suggested the introduction of a novel, simplified algorithm, called
CP + R, which proved in our preliminary results to be as much effective as SBPI under
all the circumstances in which we have tested it (with some minor adjustments), making it a
good candidate for biological and electronic implementations, and which will be the subject
of a future work.
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